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Graphical Abstract 

 

ABSTRACT 

The spatial spread of COVID-19 during early 2020 in China was primarily driven by 

outbound travelers leaving the epicenter, Wuhan, Hubei province. Existing studies 

focus on the influence of aggregated out-bound population flows originating from 

Wuhan; however, the impacts of different modes of transportation and the network 

structure of transportation systems on the early spread of COVID-19 in China are not 

well understood. Here, we assess the roles of the road, railway, and air transportation 

networks in driving the spatial spread of COVID-19 in China. We find that the short-

range spread within Hubei province was dominated by ground traffic, notably, the 

railway transportation. In contrast, long-range spread to cities in other provinces was 

mediated by multiple factors, including a higher risk of case importation associated 

with air transportation and a larger outbreak size in hub cities located at the center of 

transportation networks. We further show that, although the dissemination of SARS-

CoV-2 across countries and continents is determined by the worldwide air 

transportation network, the early geographic dispersal of COVID-19 within China is 

better predicted by the railway traffic. Given the recent emergence of multiple more 

transmissible variants of SARS-CoV-2, our findings can support a better assessment of 

the spread risk of those variants and improve future pandemic preparedness and 

responses. 

 

Keywords: Complex network; Human mobility; COVID-19; Spatial spread; 

Transportation networks 

  

                  



1. Introduction 

Emerging in late 2019, a novel coronavirus, SARS-CoV-2, spread rapidly from 

Wuhan to other cities in China in early 2020 [1]. By the end of February, the spatial 

spread of COVID-19, the disease caused by SARS-CoV-2, had been effectively curbed 

within China by strict national travel restrictions and home isolation policies enforced 

in late January 2020. Under strong Non-Pharmaceutical Interventions (NPIs), the 

epidemic went quickly under control in mainland China without massive local 

outbreaks outside the epicenter, Wuhan [2–4]. Unlike other countries with numerous 

unknown importations and subsequent prolonged community transmission [5], the 

single-source and short-term spread of COVID-19 in China provides a unique 

opportunity to study the impact of inter-city human mobility on the geographical spread 

of a novel pathogen [6,7]. 

     Before Wuhan’s lockdown on January 23, 2020, several billion trips took place 

during the Spring Festival season (i.e., “Chunyun”) and significantly accelerated the 

COVID-19 spread in China [8]. Indeed, outbound mobility from Wuhan to other cities 

was found positively correlated with the number of confirmed cases in those cities [9]. 

However, previous studies have shown that epidemic spreading can be influenced by 

factors other than the sheer number of travelers from the epicenter. For instance, Balcan 

et al. demonstrated that different modes of transportation, e.g., road commuting and air 

traffic, may have different effects on local and long-range epidemic spread [10]. Belik 

et al. showed that recurrent daily commuting and diffusive human movement lead to 

different velocities of the propagating epidemic front [11]. Differential associations 

between the Gross Domestic Product (GDP) and COVID-19 cases were also reported 

in cities stratified by location, driven by different patterns of short- and long-range 

human mobility [12]. These prior works suggest that a precise assessment of epidemic 

spread risk requires analysis of more detailed mobility data beyond the aggregated 

population flows. 

     A better understanding of the risk of COVID-19 spread associated with human 

mobility can guide future epidemic prevention and control. Considering the essential 

role of transportation in disease transmission, we characterize the impact of travels 

across the country focusing on the mode of transportation and from a network 

perspective. Specifically, we stratify destination cities by their provincial divisions, 

classify inter-city travels according to the means of transportation, and construct multi-

mode transportation networks as the underlying structure that facilitates the 

transmission of SARS-CoV-2. We then analyze the transportation network structure and 

epidemic characteristics at different spatial scales, with the attempt to answer the 

following questions: (1) to what extent can different modes of transportation explain 

the number of COVID-19 cases? (2) are different modes of transportation associated 

with varying levels of disease importation hazard? (3) how does the structure of the 

transportation network affect the progression of epidemic spread? We further use the 

effective distance, a network-based metric defined based on the transportation network 

structure, to predict the arrival time of COVID-19. 

                  



2. Materials and Methods 

2.1. Human mobility data 

The inter-city human mobility in China is obtained from Baidu Qianxi (i.e., 

mobility) service and the Tencent Location-Based Services (LBS). 

     Baidu Qianxi service provides two relevant data for the inference of inter-city 

human mobility: a relative traffic volume index 𝑂𝑖(𝑡) , which is a linearly scaled 

number of the daily traffic outflow from a city 𝑖, and the proportions 𝑝𝑖𝑗 of the traffic 

heading towards different destinations 𝑗. Therefore, the daily relative traffic volume 

from city 𝑖 to 𝑗 is 𝑂𝑖(𝑡)𝑝𝑖𝑗,. The traffic outflow from Wuhan that we used to plot Fig. 

1 is calculated based on the Baidu Qianxi service by aggregating the daily relative traffic 

volume 𝑂𝑖(𝑡)𝑝𝑖𝑗 from January 1 to January 23, 2020. 

     The traffic volume in the Baidu Qianxi service does not differentiate the mode of 

transportation. On the contrary, the Tencent LBS publishes traffic flows using the road, 

railway, and air transportation among 296 Chinese cities in 33 provinces from 321 2016 

to 2019. Specifically, for each city, the top ten sources with the highest inbound traffic 

for each transportation mode and the top ten destinations with the highest outbound 

traffic are used to show transportation networks. 

     Since the Tencent LBS traffic data in 2020 were not available, we used their 

historical data to estimate human mobility before the lockdown. The lockdown in 

Wuhan was enforced on January 23, 2020, two days ahead of the Spring Festival. 

Before the Spring Festival holiday, a large number of residents in cities migrate to their 

hometown to reunion with families and celebrate the festival. Such massive population 

migration typically exhibits similar patterns during the two weeks prior to the Spring 

Festival each year. We used the traffic data between January 24 and February 16, 2018, 

which aligns to the two-week period before January 23, 2020, on the lunar calendar, to 

estimate human mobility during the study period. See Fig. S3 in Supplementary 

Information for a detailed plot showing the similarity between the 2018 Tencent LBS 

and 2020 Baidu Qianxi traffic. After the nationwide lockdown, we assume all inter-city 

mobility is stopped. 

2.2. Imported cases from Wuhan 

Health commissions in Chinese cities started publicly disclosing local case details 

online in January 2020. The public disclosure usually includes the demographic 

information (e.g., gender, age), travel history (e.g., departure and destination), and 

epidemiological history of cases (e.g., dates of symptom onset and case confirmation 

by epidemiological evidence). We collected all such online reports (more than 15,000 

as of May 2021) and compiled a detailed line-list dataset which is updated on a bi-

weekly basis [13]. Imported cases from Wuhan are defined as the reported individuals 

who have documented travel history with Wuhan as its departure or interim transfer 

city. 

                  



2.3. The construction of multi-mode transportation networks 

The road, rail, air, and aggregated transportation networks G = {V, E} were 

constructed at both city and province levels. Nodes v ∈ V in the network represent 

cities or provinces, and directed edges e ∈ E are timestamped and weighted by the 

reported traffic volumes through road, railway, air, and all transportation modes 

aggregated between cities or provinces on each day. 

2.4. PageRank centrality 

Given a transportation network with directed edges weighted by the passenger flux 

between the nodes, the PageRank centrality PRi [14] for node i is defined as  

PRi=α ∑ 𝑃𝑅𝑗 𝐿𝑗⁄ + (1 − α) 𝑁⁄  
𝑗,𝑒𝑖𝑗∈E 

            (1) 

where α = 0.85 is a damping factor, j is a neighbor of node i, Lj is the out-degree 

of node j in the network, and N is the number of nodes in the network. The algorithm is 

realized by the NetworkX Python package. 

2.5. Effective distance 

Given a transportation network with directed edges weighted by the passenger flux 

between the nodes, the matrix P with 0 ≤ Pji ≤ 1 quantifies the fraction of the passenger 

flux with destination j emanating from node i, i.e., Pji = Fji/Fi, where Fi =∑j Fji. The 

effective distance dji [15] from a node i to a connected node j is defined as 

dji =1 - log Pji                (2) 

where dji ranges from 1 to infinity. dji = 1 means all the travelers from city i arrive 

in city j, and dji≫1 means that very few travelers from city i go to city j. dji is a 

directional measure and depicts travelers’ preference departing from the source city i to 

other cities. 

The concept of effective distance reflects the idea that a small fraction of traffic i → j is 

effectively equivalent to a large distance, and vice versa. On the basis of this, we can 

define the directed length λ (τ) of an ordered path τ = {i1,··· , iL} as the sum of effective 

lengths along the legs of the path. Moreover, we define the effective distance dji from 

an arbitrary reference node i to another node j in the network by the length of the 

shortest path from i to j: 

Dji = 𝑚𝑖𝑛
τ

 λ (τ).               (3) 

A short effective distance can accelerate virus spreading, while a large effective distance 

will hinder the spreading of diseases. 

2.6. Data availability 

The relevant COVID-19 data are collected from public sources and will be publicly 

available at GitHub upon publication. 

                  



 

3. Results 

3.1. The Simpson’s Paradox 

The total traffic flow from Wuhan to other cities in China is highly correlated with 

the cumulative number of reported cases (case number hereafter) towards the end of the 

first wave in early February 2020, with a correlation coefficient of around 0.9 (black 

line, Fig. 1a) [6,9]. However, a closer look reveals a more complex pattern. When 

stratifying cities into two subgroups according to their provincial divisions, cities 

located outside Hubei province have a much lower correlation between case numbers 

and inbound traffic from Wuhan. Similarly, several geographic, demographic, and 

socioeconomic features also exhibit differential associations with case numbers. For 

instance, whereas case numbers are negatively correlated with the GDP for cities within 

Hubei province, the association becomes positive for cities outside Hubei province 

(Figs. 1b and 2). In China, cities with higher GDP are generally more populated and 

urbanized. The more frequent human interactions in urban settings could potentially 

increase the transmission risk of COVID-19. Cities with higher GDP are also likely to 

be transportation hubs with more human mobility from other locations. The association 

between GDP and COVID-19 cases reflects the indirect effect mediated by these factors 

impacting disease transmission. In addition, the correlations between case numbers and 

the geographical distance to Wuhan (Fig. 1c) and population size (Fig. 1d) also 

demonstrate differences for cities within and outside Hubei province. Similar 

phenomena were also observed if the estimated total number of infections (both 

documented and undocumented) were used [12,16], see Supplementary Information 

and Fig. S1 for details. 

     The above phenomena are attributed to a common statistical fallacy - the 

Simpson’s Paradox [17,18]. In statistical analysis, merely assuming that individuals 

would align with the statistics of the whole group can wrongly characterize the 

peculiarities of individuals or subgroups. In our case, the association between case 

numbers and traffic influx from Wuhan is significantly reduced when stratifying cities 

by their proximity to Wuhan. Other examined geographic, demographic, and 

socioeconomic features also show different explanatory powers to case numbers (Figs. 

2 and S2). These findings indicate that lumping all cities together into the analysis of 

COVID-19 spread risk can overlook the subtle but important difference among 

subgroups of cities and hence undermine the precision of the risk assessment. As a 

result, an in-depth analysis is needed for better identification of risk factors that are 

more specific to individual cities. 

3.2. Land traffic as the dominant driver of short-range epidemic spread 

People choose different means of transportation to travel at various spatial scales. 

In China, road and air transportation are typically used for short-range and long-haul 

travels, respectively, and railway is used for both short- and long-range mobility. 

                  



Among the outflux from Wuhan during the “Chunyun” period, rail traffic accounts for 

a dominating 75.5% of the total volume (Fig. 3a). For short-range trips within Hubei 

province, road transportation also contributes a significant proportion, with air 

transportation playing a minimal role. In contrast, air transportation is more frequently 

used than road transportation for traveling to destinations outside Hubei province. 

     Different transportation modes can shape the geographical spread of an emerging 

infectious disease with complex effects. Existing research on COVID-19 has drawn 

inconsistent conclusions. For instance, Zheng et al. [19] showed that COVID-19 case 

numbers are better correlated with bus and train traffics than air traffic, while Zhao et 

al. [20] found that case numbers are significantly associated with rail traffic but not with 

road and air traffics. Here, by stratifying destination cities into subgroups within and 

outside Hubei province, we found a mixing effect. For cities within Hubei province, 

case numbers are positively correlated with the number of travelers imported from 

Wuhan via road and railway before lockdown but are negatively correlated with air 

traffic (Fig. 3b). For cities outside Hubei province, however, case numbers show an 

increased correlation with air traffic and the correlation with road traffic disappears (Fig. 

3c). 

     Intuitively, a high-volume transportation mode should primarily drive the spatial 

spread of a disease. This intuition apparently holds for cities within Hubei province, 

where land traffic and case numbers are strongly correlated. However, for cities distant 

from the epicenter, air traffic, the transportation mode that accounts for only a small 

proportion of the total volume, becomes a strong driver of COVID-19 spread. In the 

next two subsections, we explore two possible explanations for this counter-intuitive 

phenomenon: the importation risk associated with different transportation modes and 

the network effect of transportation hubs in long-distance travel. 

3.3. Higher importation risk associated with air transportation 

To compare the importation risk for different transportation modes, we constructed 

two linear regression models to explore the association between the numbers of 

imported cases in cities outside Hubei province and traffic flow from Wuhan. In the first 

model, we used the total number of passengers from Wuhan as the explanatory variable; 

in the second, the numbers of passengers using the road, rail, and air transportation were 

used as explanatory variables. In the analysis, 48 cities with information on imported 

cases identified through epidemiological investigation were included. As expected, case 

importation is positively correlated with the total influx from Wuhan (Table 1). 

However, after breaking down the total influx by the mode of transportation, we found 

a considerably higher regression coefficient for air traffic (0.099) than those for the road 

(0.007) and rail (0.005) transportation. This finding suggests that the importation risk 

associated with airplane passengers is much higher than that of travelers using land 

traffic. Collinearity test (see Section 2 in Supplementary Information) assures that the 

higher regression coefficient for air traffic is not caused by multicollinearity between 

the explanatory variables. Moreover, these results are robust when the total number of 

cases in each city is used as the dependent variable (see Table S1 for details). The 

reasons for the higher importation risk associated with air traffic need to be further 

                  



explored. 

3.4. Node centrality explains increased importation risk at transportation hubs 

As a regional economic center, Wuhan is connected to its peripheral cities in a 

relatively simple star-like hub-and-spoke structure. However, when considering long-

range disease spread, one has to consider transits between origins and destinations and 

the mobility network formed by interim transits and city-hopping travelers. The 

mobility flows in China can be described by a complex multiscale network spanning 

several orders of magnitude in intensity and spatial scales, as shown in Fig. 4. Note the 

connections indicate the origins and final destinations without showing transit stops. 

The Chinese road network appears as a grid-like lattice connecting neighboring 

subpopulations (Fig. 4a), whereas the air traffic network is composed of long-range 

connections (Fig. 4b). The rail network covers the middle ground between the two (Fig. 

4c). 

     For a disease spreading from Wuhan to distant locations, there exist a number of 

possible paths through potential multimode transits. For instance, a traveler can take 

long-range flight (possibly with interim transits) to major air traffic hubs and then travel 

to peripheral cities through the road network. In another option, the traveler can reach 

distant destinations through multiple train transits or a hybrid train-road travel. 

     Hub nodes in the long-range transit networks may be exposed to a higher 

importation risk as they aggregate the traffics of transiting travelers from/to surrounding 

locations. Here, we quantify this risk using several network centrality measures, 

including in-degree (defined as the number of cities that have traffic flow to a city), in-

strength (defined as the total traffic influx to a city), and PageRank [14], in the three 

transportation networks. The degree and strength are both local centrality measures, i.e., 

considering only the immediate neighbors of a node, while PageRank is a global 

centrality measure that resembles the graph Laplacians. Specifically, PageRank 

captures the effect of network structure by taking into account the importance of nodes’ 

neighbors recursively. The correlations between the cumulative case numbers in a city 

and the network centrality measures, as well as the traffic influx from Wuhan, are shown 

in Fig. 4 for the three networks. 

     Node centrality measures in the road and air traffic networks better explain the 

number of COVID-19 cases found in a city than the total traffic inflow from Wuhan 

(Fig. 4d and e). Notably, in the road network, the degree centrality can better explain 

the COVID-19 case numbers than the traffic influx from Wuhan and the global 

centrality measure, PageRank, especially at the early stage of disease spreading (Fig. 

4d). This is possibly due to that road traffic is mostly involved in local and short-range 

epidemic spread. For the airline network, PageRank and strength have the highest 

correlation with case numbers and can also better explain the epidemic size than traffic 

influx from Wuhan (Fig. 4e). For the rail network, the traffic influx from Wuhan has 

similar explanatory power to case numbers as local network centrality measures (Fig. 

4f). 

     This finding confirms that the railway arrivals, which account for the highest 

proportion of Wuhan’s outbound traffic, play a dominant role in disease spreading. 

                  



However, the total volume of road and air traffic from Wuhan cannot well explain case 

numbers in Chinese cities. For the lattice-like road network, high-degree nodes are 

usually regional centers, while for the structurally heterogeneous air traffic network, a 

higher in-strength or PageRank centrality indicates that the node is likely a 

transportation hub in the network. The better predictive power of strength and 

PageRank in the air traffic network and degree in the road network implies that, amid 

the short period during which COVID-19 spread from Wuhan to other cities, long-range 

disease spreading potentially passed through national transportation hubs and regional 

centers before arriving in cities that do not have a direct connection to Wuhan. 

3.5. Traffic flux in the railway network better predicts the epidemic arrival time 

Apart from case numbers, another key question on disease spreading is the arrival 

time at distant locations following an outbreak. The shortest effective distance proposed 

by Brockmann and Helbing [15] has shown predictive power in estimating epidemic 

arrival times in different countries using the global airline network. Refined effective 

distances that consider all possible transmission paths have also been proposed to 

predict the arrival times of an infectious disease [21,22]. The shortest effective distance 

between two nodes in a network is calculated using the path with the shortest point to 

point effective distance, defined as the inverse of the proportion of traffic influx from 

the source in the destination’s total influx. A shorter effective distance means the 

destination accepts a larger proportion of travelers from the outbreak source. 

     We compute the shortest effective distance Deff from Wuhan to other provinces 

in each transportation network. The epidemic arrival times Tarr, i.e., the date of first 

reported case in a province, is best correlated with the Deff in the rail network (with a 

correlation coefficient r = 0.60), and less correlated with the road network (r = 0.44), as 

shown in Fig. 5a and c. In contrast to the dominate role of the airline network in 

international epidemic spread, the correlation between Tarr and Deff in the air traffic 

network is nominal (r = 0.02) for COVID-19 spread in China (Fig. 5b). The strong 

association between the shortest effective distance in the land transportation networks 

and epidemic arrival time shows that a destination with a larger proportion of arrivals 

from Wuhan may be exposed to the disease earlier. This analysis indicates that 

geographical scale matters in the assessment of the spread risk of an emerging 

infectious disease. While international disease spread is largely driven by long-range 

flights, progression of COVID-19 spread within China is determined by high-volume 

land transportation. 

  It is important to examine whether railways are also major drivers of SARS-

CoV-2 transmissions in other provinces outside the epicenter. However, as case 

numbers were low in other provinces, it is not feasible to perform the same analysis for 

each individual province. As an alternative, we analyzed the mobility data in the top 10 

provinces with the largest population. Specifically, we computed 1) the proportion of 

railway travels from the province capital to other cities within that province, and 2) the 

proportion of railway travels from the province capital to cities outside that province. 

Results in Table 2 indicate that the railway is still the leading mode of inter-city 

transportation within these provinces, similar to Hubei province. As a result, railways 

                  



were also potentially a major driver of intra-provincial transmission of SARS-CoV-2 in 

other provinces. We additionally checked whether the proportion of railway travel from 

Wuhan to other cities increased during the Chunyun period. We found this proportion 

remained unchanged throughout the year (Fig. S4). These analyses imply that the 

identified spread risk associated with railways may be generalized beyond the epicenter 

Hubei and the Chunyun period. 

4. Conclusion and Discussion 

In early 2020, COVID-19 swept across the globe in a span of just a few months. 

Understanding the spatial spread of COVID-19 is critical for the preparedness for future 

emerging infectious diseases. Previous studies found that the spread risk of COVID-19 

is highly correlated with the number of travelers from the epicenter. Here, we take a 

closer look by stratifying population flows according to the mode of transportation and 

find more nuanced patterns. In particular, different transportation networks induce 

distinct spread risk of COVID-19 in other locations depending on their proximity to the 

epicenter and network structure. While disease spread in peripheral cities close to 

Wuhan is dominantly affected by road and train traffics, the long-range spread is 

impacted by a number of factors, including higher importation risk associated with air 

traffic and increased risk of transportation hubs that aggregate transiting travelers. The 

traffic flux in the railway network can better predict the arrival time of COVID-19 in 

China. A few limitations exist for this study. First, cases were mostly reported within 

Hubei province, which may impact the computation of associations in Figs. 1 and 2. 

Second, in this study, we stratified locations according to administrative boundaries (i.e., 

within and outside Hubei province). Analysis based on the distance to the epicenter 

should yield qualitatively similar results. However, determining the geographical scale 

of the distance separating the short- and long-range spread, which may depend on the 

catchment area of the epicenter, needs to be further studied. 

     The implication of our study has two folds. First, with vaccines being 

disseminated worldwide and economic activities expected to recover gradually, the risk 

of importation/reintroduction of COVID-19 through long-haul travels shall not be 

overlooked. Therefore, it is imperative to have an accurate assessment of the COVID-

19 spread risk to prevent the re-emergence of the virus and introduction of more 

transmissible variants. Second, accurate estimation of the spread risk and the arrival 

time of emerging infectious diseases needs to consider the patterns of multi-scale 

human mobility and the associated traffic network. Analysis lumping all locations and 

aggregated mobility data together may lead to results that do not apply to a certain 

subgroup of locations. 
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Figures 

 

 
Fig. 1. The correlations between the cumulative numbers of reported COVID-19 cases 

and (a) traffic inflow from Wuhan, (b) GDP, (c) geographical distance to Wuhan, and 

(d) population size, for cities within and outside Hubei province, as well as all cities in 

China, from January 24 to February 6, 2020. 

 

 

 

 

                  



 
Fig. 2. Relationship between the cumulative confirmed cases on February 6, 2020 and 

cities’ GDP in 2020. Cities within and outside Hubei province are highlighted in blue 

and red, respectively. Node sizes are proportional to the log-transformed average daily 

outflows from Wuhan. See Supplementary Information and Fig. S2 for the same plots 

between the cities’ cumulative confirmed cases and traffic inflow from Wuhan, 

distances to Wuhan, and city population in 2020. 

 

 

 

 

Fig. 3. (a) The proportion of road, rail, and air traffics departing from Wuhan to other 

cities. The correlations between the cumulative COVID-19 case numbers from January 

24 to February 6, 2020 and the influx via road, air, and rail from Wuhan to other cities 

within (b) and outside (c) Hubei province before the lockdown. 

 

 

 

                  



 

Fig. 4. Transportation networks in China. The (a) road, (b) air, and (c) rail transportation 

networks are formed by inter-city travels. The width and color (from blue to red) of the 

edges represent the mobility flow intensity on a logarithmic scale. Wuhan locates near 

the geographic center of China and is a hub in all three transportation networks. The 

correlations between case numbers and cities’ network centrality measures (in-degree, 

in-strength, PageRank, and traffic influx from Wuhan) in the road, air, and rail 

transportation networks are shown in (d), (e), and (f), respectively. 

 

 

 
Fig. 5. The correlation between epidemic arrival times Tarr and effective distances Deff 

in different transportation networks: (a) road (r = 0.44), (b) air (r = 0.02), (c) railway (r 

= 0.60). 

  

                  



Table 1. Relative importation risks of different transportation modes for cities 

outside Hubei province 

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 

  

  Number of imported cases  

  Model 1 Model 2  

 n 48 48  

 total arrival 0.005∗∗∗ -  

 road arrival - 0.007∗∗∗  

 rail arrival - 0.005∗∗∗  

 air arrival - 0.099∗∗∗  

 R2 0.119 0.212  

 F-value 90.60 59.81  

                  



Table 2. The proportion of railway transportation from the capital city of each 

province to other cities within and outside the province. Analysis was performed 

for the top 10 provinces with the largest resident population. 

 

Province (Capital City) Within Province Outside Province 

Guangdong (Guangzhou) 52.1% 86.3% 

Shandong (Jinan) 56.2% 80.1% 

Henan (Zhengzhou) 55.8% 89.1% 

Jiangsu (Nanjing) 61.1% 72.8% 

Sichuan (Chengdu) 52.8% 85.1% 

Hebei (Shijiazhuang) 52.7% 79.9% 

Hunan (Changsha) 51.1% 82.3% 

Zhejiang (Hangzhou) 51.7% 77.0% 

Anhui (Hefei) 52.7% 77.2% 

Hubei (Wuhan) 61.1% 92.1% 
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